
Evolvable Systems for Space Applications

Jason Lohn1, James Crawford1, Al Globus2, Gregory Hornby3, William Kraus3,
Gregory Larchev3, Anna Pryor1, Deepak Srivastava2

1Computational Sciences Division, NASA Ames Research Center, Mountain View, CA 94035
2Computer Sciences Corp., NASA Ames Research Center, Mountain View, CA 94035

3QSS Group, Inc., NASA Ames Research Center, Mountain View, CA 94035
Email: Jason.D.Lohn@nasa.gov

Abstract

This article surveys the research of the Evolvable Sys-
tems Group at NASA Ames Research Center. Over the
past few years, our group has developed the ability to
use evolutionary algorithms in a variety of NASA ap-
plications ranging from spacecraft antenna design, fault
tolerance for programmable logic chips, atomic force
field parameter fitting, analog circuit design, and earth
observing satellite scheduling. In some of these appli-
cations, evolutionary algorithms match or improve on
human performance.

1 Spacecraft Antenna Design

In this section we summarize a proof-of-concept
study [12] that investigated the optmization of the de-
ployed antenna on the Mars Odyssey spacecraft.

Automated antenna synthesis via evolutionary de-
sign has recently garnered much attention in the re-
search literature [13]. Evolutionary algorithms show
promise because, among search algorithms, they are
able to effectively search large, unknown design spaces.

NASA’s Mars Odyssey spacecraft is currentlyin Mar-
tian orbit. Onboard the spacecraft is a quadrifilar he-
lical antenna that provides telecommunications in the
UHF band with landed assets, such as robotic rovers.
This antenna can be seen in Fig. 1. Each helix is driven
by the same signal which is phase-delayed in 90◦ incre-
ments. A small ground plane is provided at the base.
It is designed to operate in the frequency band of 400-
438 MHz.

Based on encouraging previous results in automated
antenna design using evolutionary search, we wanted to
see whether such techniques could improve upon Mars
Odyssey antenna design. Specifically, a coevolutionary
genetic algorithm is applied to optimize the gain and
size of the quadrifilar helical antenna.

Figure 1: Photograph of the quadrifilar helical UHF
antenna deployed on the Mars Odyssey spacecraft.

The optimization was performed in-situ – in the pres-
ence of a neighboring spacecraft structure [9]. On the
spacecraft, a large aluminum fuel tank is adjacent to
the antenna. Since this fuel tank can dramatically af-
fect the antenna’s performance, we leave it to the evo-
lutionary process to see if it can exploit the fuel tank’s
properties advantageously.

Optimizing in the presence of surrounding structures
would be quite difficult for human antenna designers,
and thus the actual antenna was designed for free space
(with a small ground plane). In fact, when flying on the
spacecraft, surrounding structures that are moveable
(e.g., solar panels) may be moved during the mission
in order to improve the antenna’s performance.

1.1 Experiments and Results

Experiments were set up as follows. The Numerical
Electromagnetics Code program was used to evaluate
all antenna designs. We used a parallel master/slave
generational genetic algorithm with a population size of
6000. One point crossover across byte boundaries was
used at a rate of 80%. Mutation was uniform across
bytes at a rate of 1%. Runs were executed on 32-node
and 64-node Beowulf computing clusters.

The wire geometry encoded by each individual chro-
mosome was first translated into a NEC input deck,
which was subsequently sent to the NEC simulator.

Administrator
J. Lohn, J. Crawford, A. Globus, G. Hornby, W. Kraus, G. Larchev, A.Pryor, D. Srivastava, "Evolvable Systems for Space Applications," International Conference on Space Mission Challenges for Information Technology (SMC-IT 2003), Pasadena, July 13-16, 2003, to appear.

The segment size for all elements was fixed at 0.1λ,
where λ was the wavelength corresponding to 235 MHz.
A coarse model of the neighboring fuel tank was used

in the simulations. Its size and position was calcu-
lated based on engineering drawings of the spacecraft.
To compare our results to the spacecraft antenna, we
modeled that antenna with the best data we had at the
time of this writing.
A coevolutionary genetic algorithm was applied to

the quadrifilar helical antenna optimization. Two pop-
ulations are used: one consisting of antenna designs,
and one consisting of target vectors. The fundamen-
tal idea is that the target vectors encapsulate level-
of-difficulty. Then, under the control of the genetic
algorithm, the target vectors evolve from easy to dif-
ficult based on the level of proficiency of the antenna
population.
Each target vector consists of a set of objectives that

must be met in order for a target vector to be “solved.”
A target vector consisting of two values: the average
gain (in dB), VSWR, and antenna volume. A target
vector was considered to be solved by a given antenna
if the antenna exceeds the performance thresholds of
all target.
Values for target gain ranged between -50 dB (easy)

and 8 dB (difficult). Target VSWR values ranged be-
tween 100 (easy) and 20 (difficult). Target antenna
volumes ranged from 100,000 cm3 (easy) to 100 cm3

(difficult). Target vectors are represented as a list of
floating point values that are mutated individually by
randomly adding or subtracting a small amount (5%
of the largest legal value). Single point crossover was
used, and crossover points were chosen between the
values.
Antennas are rewarded for solving difficult target

vectors. The most difficult target vector is defined to
be the target vector that only one antenna can solve.
Such a target vector garners the highest fitness score.
Target vectors that are unsolvable, or are very easy to
solve by the current antenna population, are given low
fitness scores.
Fitness was expressed as a cost function to be mini-

mized. The calculation was as follows:

F = −GL +
∑
(C ∗ Vi) C =

{
0.1 if Vi ≤ 3
1 if Vi > 3

where: GL = lowest gain of all frequencies measured at
θ = 0◦ and φ = 0◦, Vi = VSWR at the ith frequency.
Lacking from this calculation was a term involving side-
lobe/backlobe attenuation. We chose not include such
a term because we reasoned that as the mainlobe gain
increased, the sidelobes/backlobes would decrease in
size.

A set of five runs were executed using the algo-
rithm described above. Only one of the runs found an
antenna design that exceed that benchmark antenna.
Fig. 2 shows the gain plots for both the evolved and
actual Mars UHF antennas. Fig. 3 show the anten-
nas, structures, and radiation patterns of actual Mars
Odyssey UHF and evolved antenna. The evolved an-
tenna measures 6cm × 6cm × 16cm which approxi-
mately four times as small volumewise as the bench-
mark (roughly 10cm × 10cm × 25cm). At 400 MHz,
the average gain of the evolved antenna was 3.77 dB
and 1.95 for the benchmark antenna. At 438 MHz, the
average gain of the evolved antenna was 2.82 dB and
1.90 for the benchmark antenna. This represent a 93%
improvement at 400 MHz and a 48% improvement at
438 MHz in the average gain.

0 5-5

0

180

90-90

actual evolved

0 5-5

0

180

90-90

actual evolved

Figure 2: Gain plots for 400 MHZ (left) and 438 MHz
(right). In each case, the evolved antenna maintains
a higher gain than the actual Mars Odyssey antenna.
Plots take into account circular polarization.

Figure 3: Radiation pattern of the evolved antenna.
The antenna can be seen in the upper left and the fuel
tank in the lower right.

1.2 Discussion

An improved version of the quadrifilar antenna cur-
rently flying on Mars Odyssey was presented. The evo-
lutionary algorithm allowed the antenna to be designed
in the presence of the surrounding structure, whereas
the human-designed antenna was designed for free-
space. Results showed a 93% improvement at 400 MHz
and a 48% improvement at 438 MHz in the average
gain. The evolved antenna was also one-fourth the size
of the actual antenna on the spacecraft, which is im-
portant because of the scarcity of area on spacecraft.
For human antenna designers, designing an antenna

to be synergistic with its surrounding structures is typ-
ically a daunting task. The results from the quadrifilar
helical antenna provide encouraging evidence that evo-
lution can exploit those structures to give increased
antenna performance.

2 Atomic Force Field Parame-

ters

In this section, we summarize work on automatically
finding molecular force field parameters [3].
Accurate molecular dynamics simulation of reac-

tive systems containing many atomic species is im-
portant for the conceptualization, design and testing
of novel nanoscale materials, molecular electronic de-
vices, nano-integrated systems and applications, and a
broad range of physical and chemical phenomenon in
other areas as well. The physical and chemical charac-
terization of carbon nanotubes and fullerenes, design
and operations of molecular gears, hinges, three-way
junctions, and bearings have also utilized simulations
using reactive dynamics of 2- or 3-atomic species con-
taining systems [2]. However, as the system and device
sizes continue to shrink and composition becomes more
multi-species, there is an urgent need for developing
good quality reactive atomic force field functions that
are not currently available.
The primary impediment to determining the poten-

tials is simulation speed. Simulation at the quantum-
mechanical level is prohibitively slow for more than a
few hundred atoms. However, millions of atoms can
be simulated using classical potentials, albeit with less
accuracy, and this is the approach taken here. Un-
fortunately, reactive multi-species potentials are only
available for a few atomic species. Furthermore, devel-
oping reactive multi-species potentials is difficult, time
consuming, tedious, failure prone and, thus, rarely at-
tempted.
There are two parts to developing atomic force field

functions. First, finding an analytic functional form

that reflects the physical and chemical nature of the
atomic species under consideration, and second, fitting
parameters in a complex multi-dimensional parameter
space based on the data available from the experiments
or more accurate quantum mechanical calculations. In
an ideal case, the cycle of choosing a functional form
and parameterization of the force field function should
be iterated until a reasonable convergence on the choice
of inter-atomic potentials is achieved. Doing this for
multi-component systems is extremely tedious because
the parameter space that needs to be investigated is
large and may be coupled in a complex way. The te-
dium has deterred regular successful attempts in devel-
oping

2.1 Evolutionary Algorithm

JavaGenes [6] is a steady state tournament selection
genetic algorithm. The tournament size is usually
two. In tournament selection each parent is chosen
by randomly selecting two individuals from the popu-
lation and choosing the fittest to be the parent. After
crossover or mutation produces a child, individuals to
replace are chosen by an anti-tournament of size two.
An anti-tournament chooses the least fit individual.

We represent force field parameters as a ragged two-
dimensional array of double precision floating point
numbers. The first dimension represents the two- or
three-body terms of the potential function, and the
ragged second dimension holds the varying number of
parameters depending on the number of bodies. Each
parameter is assigned a set of limits within which it is
allowed to evolve. The limiting values of the parame-
ters are chosen from the physical interpretation of the
contribution of the parameter to the force field function
and are randomized among jobs.

Evolution is guided by a fitness function. The fitness
function must provide a fitness for any possible individ-
ual, no matter how bad, and distinguish between any
two individuals, no matter how close they are. The fit-
ness function for this work compares energies and forces
computed for a given set of atomic conformations using
the evolving parameters with externally supplied ener-
gies and forces. Conformations for both near equilib-
rium and far from equilibrium configurations for very
high and low energies were used

In general GA is not guaranteed to find a unique
or even a satisfactory solution, but often works well in
practice. JavaGenes uses many “GA parameters” (mu-
tation rate, tournament size, etc.) that can affect per-
formance and results of the search procedure. Choosing
GA parameters is a non-trivial problem. We solve this
by randomizing the choice of GA parameters in appro-

priate ranges in many parallel GA jobs. This elimi-
nates a tedious human-directed search for good GA-
parameters. Initially, 30-100 single-workstation GA
runs with identical GA-parameters (except the random
number seed) for each job were run with populations
varying between 1000-3000. The GA-parameters that
worked for one search (say, Si dimers in the fitness func-
tion) would fail in a similar search for a different sys-
tem (say, larger Si clusters). The alternate technique
of using a thousand trajectories with randomized GA-
parameters and smaller populations (100-200) worked
very well for all the systems attempted.

Using the evolutionary algorithm described above to
automate force-field parameterization, we were able to
reproduce the Stillinnger-Weber parameterization for
Si [14], and generate parameters new force field func-
tions for Si and Ge for a variety of nanotechnology
applications. The new Si parameters matched the en-
ergetics of small Si clusters much better than Stillinger-
Weber, and the new Ge parameters are the first avail-
able for the Stillinger-Weber functional form.

3 Fault Recovery on FPGAs

Most evolutionary approaches to fault recovery in FP-
GAs focus on evolving alternative logic configurations
as opposed to evolving the intra-cell routing. Since the
majority of transistors in a typical FPGA are dedicated
to interconnect, nearly 80% according to one estimate,
evolutionary fault-recovery systems should benefit by
accommodating routing. In this section, we describe an
evolutionary fault-recovery system employing a genetic
representation that takes into account both logic and
routing configurations. Experiments were run using a
software model of the Xilinx Virtex FPGA. We report
that using four Virtex combinational logic blocks, we
were able to evolve a 100% accurate quadrature de-
coder finite state machine in the presence of a stuck-
at-zero fault.

3.1 Approach

Bitstring representations are a natural choice for
FPGA applications, and many times the raw configu-
ration string can be used as the representation. In our
case, we chose a bitstring representation mainly out of
convenience in programming. Since we knew that only
a handful of CLBs would be evolved, our bitstrings
would be at most 1000 bits long. We acknowledge
that this approach would likely suffer as more CLBs
were utilized and the corresponding bitstring enlarged
to thousands of bits.

LUT 0 BITS

R-CLB = REMOTECLB

R-LUTR-CLB

R-LUT = REMOTELUT

R-LUTR-CLB...
LUT 0 INPUTS

... R-LUTR-CLB R-LUTR-CLB...
LUT 3 INPUTS

LUT 3 BITS ...
CLB 0 CLB 1

Figure 4: Genetic representation used showing logic
fields and routing fields.

CLB 0

LUT
0

LUT
1

LUT
2

LUT
3

CLB 1 CLB n

· ··
LUT
0

LUT
1

LUT
2

LUT
3

LUT
0

LUT
1

LUT
2

LUT
3

LUT
0

LUT
1

LUT
2

LUT
3

LUT
0

LUT
1

LUT
2

LUT
3

Figure 5: Example of routing among CLBs.

The representation is shown in Figure 4. This
scheme is comprised of multiple 128-bit fields, one for
each CLB. Within each CLB field are a number of sub-
fields that specify each of the LUT bits and remote con-
nections. There are 16 bits that specify the contents of
each LUT. Each LUT has four inputs, and since each
of these inputs can be connected to other LUT out-
puts, the remote CLB/LUT requires addressing bits.
Since our system will be comprised of four CLBs, we
need only two bits to specify the remote CLB, and an-
other two bits to specify the particular LUT within the
CLB. This pattern of sub-fields continues for each LUT
until all the LUTs in the CLB are accounted for. An
illustration of the CLBs, LUTs and sample routing is
shown in Figure 5.

3.2 Experiments and Results

The quadrature decoder [1] was selected as an initial
case study for testing and refinement of our evolution-
ary recovery strategy. It represents a NASA applica-
tion of manageable size that is appropriate for tuning
of the GA. Quadrature decoders provide a means of
counting objects passed back and forth through two
beams of light, or alternatively determining the angu-
lar displacement and direction of rotation of an encoder
wheel turning about its axis. A quadrature decoder
that determines the direction of rotation of a shaft is
shown in Figure 6.

3.3 Experimental Setup and Results

The software system used is depicted in Figure 7. The
entire system is implemented in software. The GA
software is ECJ, a Java-based evolutionary computa-
tion and genetic programming system by Sean Luke of

B-Channel
Photo -Transistor

A-Channel
Photo -Transistor

B-Channel LED

A-Channel LED

Motor
Shaft

B-Channel
Photo -Transistor

A-Channel
Photo -Transistor

B-Channel LED

A-Channel LED

Motor
Shaft

B-Channel LED A-Channel LED

0 1

B-Channel LED A-Channel LED

0 1

Figure 6: Rotating shaft application for a quadrature
decoder.

Virtex DS
evaluate

JBits

ECJ + Our Code

FPGA output

JBuilder simulated fault

Virtex DS
evaluate

JBits

ECJ + Our Code

FPGA output

JBuilder simulated fault

Figure 7: Software system for FPGA fault recovery.

George Mason University. ECJ is augmented by our
code for tasks like decoding individuals and calculat-
ing fitness. The GA sits on top of Xilinx Corporation’s
JBits software [7], a set of Java classes which provide
an Application Programming Interface to access the
Xilinx FPGA bitstream. Xilinx’s Virtex DS software,
which simulates the operation of Virtex devices, is used
to test candidate solutions. Borland’s JBuilder Java
environment is used for development and to run the
system, though Sun Microsystem’s Java virtual ma-
chine is used beneath JBuilder.
To evaluate the fitness of an individual, an input

stream of 500 bit pairs is used. These inputs attempt
to fully exercise the evolving finite state machines. The
output stream consists of 510 bits sampled across all
four CLBs. Ten bits are added to allow for delays in the
evolved FSMs. This gives ten output stream windows
of length 500, with each output stream shifted by 1-bit
from the next. Sampling across all the CLBs allows
the GA to maximum flexibility in building the FSM.
Thus, fitness is expressed as:

F = max
i=1,4;j=0,9

(CLBji)

where CLBji represents the number of correct output
bits from the ith CLB shifted by j clock ticks. The
fitness is simply the highest number of correct output
bits seen across all of the CLBs and across the ten
output windows. The best score is 500, and the worst
score is 0.
Ten experimental runs were conducted using smaller

input bitstreams of 100 bit pairs. These were found to
evolve finite state machines that were tuned to the test

cases, but not robust when interrogated with out of
sample input test streams. Two runs were conducted
using 500 bit pairs and one these runs was able to
evolve a 100% accurate quadrature decoder finite state
machine in the presence of an induced fault. The best
evolved configuration was found in generation 623 and
is shown in Figure 8. Two of the 16 LUTs went unused
which is not surprising given that the FSM can be im-
plemented with about 10 LUTs. The GA exploits the
induced fault to its advantage because if you remove
the fault in the evolved solution, it no longer functions
correctly – it achieves an accuracy of only 93.8%. Also,
note that the input LUTs had mostly zeros in their ta-
bles. This is because we fix most of those bits to zero in
the genome since they do not affect the LUT’s function.
However, the “corner” bits of each of those input LUTs
are involved in processing the input, and therefore, are
evolved.

MSB

out

x

Fault
(stuck-at-0)

MSB

MSB

MSB

LSB

LSB

LSB

LSB

MSB

MSB

MSB

MSB

LSB

LSB

LSB

LSB

Figure 8: Evolved configuration showing routing, LUT
contents, and simulated fault. Inputs are on the lines
labeled MSB and LSB, referring to the least/most sig-
nificant bit of the input. Wires that are shown crossing
perpendicularly (eg, +) are unconnected – only wires
that have > junctions are connected.

At the time of this writing, we have started running
similar experiments using the actual hardware FPGA
in the evolutionary loop (see Figure 9). The initial
runs look promising. We have been able to evolve per-
fect quadrature decoders in the presence of 20 injected
stuck-at faults in less than 5 minutes on a board clocked
at 1 MHz. Even more encouraging is that we may be
able to complete an entire evolutionary run in less than
a minute. Our current system spends 90% of its time
in software routing operations which we believe can be
drastically reduced. On the hardware side, we have
the ability to clock our board at much higher clock

Figure 9: FPGA Fault Recovery demonstration sys-
tem.

frequencies.

4 Analog Circuit Design

In this section we outline a method of evolving analog
electronic circuits using a linear representation and a
simple unfolding technique [11]. While this represen-
tation excludes a large number of circuit topologies, it
is capable of constructing many of the useful topolo-
gies seen in hand-designed circuits. Our system allows
circuit size, circuit topology, and device values to be
evolved. Using a parallel genetic algorithm we present
initial results of our system as applied to two analog
filter design problems. The modest computational re-
quirements of our system suggest that the ability to
evolve complex analog circuit representations in soft-
ware is becoming more approachable on a single engi-
neering workstation.

4.1 Approach

Circuits are represented in the genetic algorithm as a
list of bytecodes which are interpreted during a sim-
ple unfolding process. A fixed number of bytecodes
represent each component as follows: the first is the
opcode, and the next three represent the component
value. Component value encoding is discussed first.

Using three bytes allows the component values to
take on one of 2563 values, a sufficiently fine-grained
resolution. The raw numerical value of these bytes
was then scaled into a reasonable range, depending on
the type of component. Resistor values were scaled
sigmoidally between 1 and 100K ohms using 1/(1 +
exp(−1.4(10x−8))) so that roughly 75% of the resistor
values were biased to be less than 10K ohms. Capac-

evolved
circuit

vs

end nodestart node

~

output
voltage

Rl

Rs

Figure 10: Artificially evolved circuit is located be-
tween fixed input and output terminals (vs is an ideal
ac voltage source, Rs is the source resistance, Rl is the
load resistance).

itor values were scaled between approximately 10 pF
and 200 µF and inductors between roughly 0.1 mH
and 1.5 H.
The opcode is an instruction to execute during cir-

cuit construction. In the current design of our system,
we use only “component placement” opcodes which ac-
complish placement of resistors, capacitors, and induc-
tors. The five basic opcode types are: x-move-to-new,
x-cast-to-previous, x-cast-to-ground, x-cast-input, x-
cast-to-output, where x can be replaced by R (resistor),
C (capacitor), or L (inductor). In a circuit design prob-
lem involving only inductors and capacitors (an LC
circuit), ten opcodes would be available to construct
circuits (five for capacitors and five for inductors).
The circuit is constructed between fixed input and

output terminals as shown in Fig. 10. An ideal AC
input voltage source vs is connected to ground and to
a source resistor Rs. The circuit’s output voltage taken
across a load resistor Rl.
To construct the circuit, a “current node” register

(abbreviated CN; with “current” used in the sense of
present, not electrical current) is used and initialized
to the circuit’s input node. The unfolding process then
proceeds to interpret each opcode and associated com-
ponent values, updating the CN register if necessary.
The x-move-to-new opcode places one end of compo-
nent x at the current node (specified by the CN regis-
ter) and the other at a newly-created node. The CN
register is then assigned the value of the newly-created
node. The “x-cast-to-” opcodes place one end of com-
ponent x at the current node and the other at either
the ground, input, output, or previously-created node.
After executing these opcodes, the CN register remains
unchanged. The meanings of each opcode are summa-
rized in Table 1. All five opcode types place compo-
nents into the circuit, although they could be designed
to do other actions as well, e.g., move without place-
ment.
The list of bytecodes is a variable-length list (the

Opcode Destination Node CN Register

x-move-to-new new-node new-node

x-cast-to-previous previous node unchanged

x-cast-to-ground ground node unchanged

x-cast-to-input input node unchanged

x-cast-to-output output node unchanged

Table 1: Summary of opcode types used in current
system. x denotes a resistor, capacitor, or inductor.

frequency

Kp

fp fs

Ks

fc

passband stopband

at
te

n
u

at
io

n
 (

d
B

)

Figure 11: Low-pass filter terminology and specifi-
cations. The crosshatched regions represent out-of-
specification areas. An example frequency response
curve that meets specifications is shown.

length is evolved by the GA). Thus, circuits of vari-
ous sizes are constructed. When the decoding process
reaches the last component to place in the circuit, we
arbitrarily chose to have the last node (value in CN)
connected to the output terminal by a wire. By doing
so, we eliminate unconnected branches.

4.2 Experiments and Results

The evolved circuit we present below is a low-pass fil-
ter. A low-pass filter is a circuit the allows low fre-
quencies to pass through it, but stops high frequencies
from doing so. In other words, it “filters out” frequen-
cies above a specified frequency. The unshaded area in
Fig. 11 depicts the region of operation for low-pass fil-
ters. Below the frequency fp the input signal is passed
to the output, potentially reduced (attenuated) by Kp
decibels (dB). This region is known as the passband.
Above the frequency fs, the input signal is markedly
decreased by Ks decibels. As labeled, this region is
called the stopband. Between the passband and stop-
band the frequency response curve transitions from low
to high attenuation. The parameter located in this re-
gion, fc, is known as the cutoff frequency.

The low pass filter chosen was a circuit that can be
built using a 3rd-order Butterworth filter. The specifi-

C2

3.0245E-7

0.16886

L4Rs
1K

+

-
2V

V1

C1

0.0000780.77637

L2
L5

0.50176

0.28838

L1

1K
RL

1.14991

L3

Figure 12: Evolved 3rd-order Butterworth low-pass fil-
ter (units are ohms, farads, and henries).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000

V
ol

ts

Frequency (Hz)

Kp=3.01 dB Ks=22 dB

Figure 13: Frequency response curve for evolved 3rd-
order Butterworth low-pass filter. Attenuation specifi-
cations are also shown. The frequency axis is a scaled
logarithmically.

cations are as follows:

fp = 925 Hz Kp = 3.0103 dB
fs = 3200 Hz Ks = 22 dB

Such a filter design can be derived using a ladder
structure and component values found in published ta-
bles. The GA was allowed to use capacitors and in-
ductors during evolution, resulting in an LC low-pass
filter. The evolved circuit that meets these specifica-
tions is shown in Fig. 12 and its frequency response is
shown in Fig. 13. It was found in generation 22 of a
GA run that lasted approximately four hours using six
Sun Ultra workstations working in parallel.

5 EOS Satellite Scheduling

We hypothesize that evolutionary algorithms can ef-
fectively schedule coordinated fleets of Earth observ-
ing satellites. The constraints are complex and the
bottlenecks are not well understood, a condition where
evolutionary algorithms are often effective. This is,

Figure 14: Photograph of the Beowulf cluster.

in part, because evolutionary algorithms require only
that one can represent solutions, modify solutions, and
evaluate solution fitness. To test the hypothesis we
have developed a representative set of problems, pro-
duced optimization software (in Java) to solve them,
and run experiments comparing techniques. We’ve ob-
tained initial results of a comparison of several evolu-
tionary and other optimization techniques – namely
the genetic algorithm, simulated annealing, squeaky
wheel optimization, and stochastic hill climbing. We’ve
also compared separate satellite vs. integrated schedul-
ing of a two satellite constellation. While the results
are not definitive, tests to date suggest that simulated
annealing is the best search technique and integrated
scheduling is superior. This work is described in [5] as
well as a companion paper “Scheduling Earth Observ-
ing Satellites with Evolutionary Algorithms” in these
proceedings.

6 Beowulf Cluster

A crucial component to most research in Evolvable Sys-
tems is the computational hardware. For the work re-
ported above, our group uses an 80-cpu Beowulf Clus-
ter as shown in Figure 14. The cluster uses a mixture
of Intel and AMD cpus, standard office ethernet, and
does not include disks at each node.

7 Discusssion

We have surveyed some of the research and develop-
ment from the Evolvable Systems Group at NASA
Ames Research Center. While most applications are
currently in the proof-of-concept stage, we are inves-
tigating a mission insertion opportunity on one of our
antenna designs. If successful, this would be one of the
first fielded evolvable hardware applications.

References

[1] Agilent Technologies, Quadrature Decoder/Counter
Interface ICs, Data Sheet HCTL-2020PLC.

[2] Al Globus, Charles Bauschlicher, Jie Han, Richard
Jaffe, Creon Levit, Deepak Srivastava,“Machine Phase
Fullerene Nanotechnology,” Nanotechnology, 9, num-
ber 2, September 1998, pp. 192-199.

[3] A. Globus, J. Lawton, and T. Wipke, ”Automatic
molecular design using evolutionary techniques,” Nan-
otechnology, Volume 10, Number 3, September 1999,
pp. 290-299.

[4] “Evolving Molecular Force Field Parameters for Si and
Ge,” A. Globus, E. Ricks, M. Menon, D. Srivastava
Proc. of the 2003 Nanotechnology Conf. Trade Show,
February 23-27, 2003, San Francisco, California, USA.

[5] A. Globus, J. Crawford, J. Lohn, and R. Morris,
”Scheduling Earth Observing Fleets Using Evolution-
ary Algorithms: Problem Description and Approach,”
Proceedings of the 3rd Intl. NASA Wkshp. on Plan-
ning and Scheduling for Space.

[6] “JavaGenes: Evolving Molecular Force Field Param-
eters with Genetic Algorithm,” Al Globus, Madhu
Menon, and Deepak Srivastava, Computer Modeling
in Engineering and Science, vol. 3, no. 5, pp. 557-574,
2002.

[7] S. Guccione, D. Levi, P. Sundararajan, “JBits: A
Java-based Interface for Reconfigurable Computing,”
2nd Annual Military and Aerospace Applications of
Programmable Devices and Technologies Conference
(MAPLD).

[8] J.H. Holland, Adaptation in Natural and Artificial Sys-
tems, Univ. of Michigan Press, Ann Arbor, 1975.

[9] D.S. Linden. “Wire Antennas Optimized in the Pres-
ence of Satellite Structures using Genetic Algorithms.”
IEEE Aerospace Conference, April 2000.

[10] D.S. Linden, “Automated Design and Optimization of
Wire Antennas using Genetic Algorithms.” Ph.D. The-
sis, MIT, September 1997.

[11] J.D. Lohn, S.P. Colombano, “Automated Analog Cir-
cuit Synthesis using a Linear Representation,” Proc. of
the Second Int’l Conf on Evolvable Systems: From Bi-
ology to Hardware, Springer-Verlag, Berlin, 1998, pp.
125-133.

[12] J.D. Lohn, W.F. Kraus, D.S. Linden, “Evolution-
ary Optimization of a Quadrifilar Helical Antenna,”
Proc. of the IEEE AP-S International Symposium and
USNC/URSI National Radio Science Meeting, June,
2002.

[13] Electromagnetic Optimization by Genetic Algorithms.
Y. Rahmat-Samii and E. Michielssen, eds., Wiley,
1999.

[14] F. H. Stillinger, T. A. Weber, Dynamical Branch-
ing during Fluorination of the Dimerized Si(100) Sur-
face: A Molecular Dynamic Study, Journal of Chemi-
cal Physics, 92(10), pages 6239-6245, May 1990.

